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ABSTRACT

A collection of eight operational global analyses over a 27-month period have been processed to common

data structures to facilitate comparisons among the analyses and global observational datasets. The present

study evaluated the global precipitation, outgoing longwave radiation (OLR) at the top of the atmosphere,

and basin-scale precipitation over the United States. In addition, a multimodel ensemble was created from a

linear average of the available data, as close to the analysis time as each system permitted. The results show

that the monthly global precipitation and OLR from the multimodel ensemble compares generally better to

the observations than any single analysis. Likewise, the daily precipitation from the ensemble exhibits better

statistical comparison (in space and time) to gauge observations over the Mississippi River basin. However,

the comparisons have seasonality, when the members of the ensemble exhibit generally more skill, during

winter. There is notably higher skill of the summertime basin precipitation by the ensemble. Using the global

precipitation and OLR, the sensitivity was tested to selectively choose the members with the best statistical

comparisons to the reference data. Only small improvements in the statistics were found when comparing a

selective ensemble to the full ensemble. Additionally, terms of the global energy budget were compared

among the ensemble and to other estimates. The ensemble data and the variance of the ensemble should make

a useful point of comparison for the development of model and assimilation components of global analyses.

1. Introduction

Ensemble means of simulations using different models

have been shown to provide a result better than the mean

of the skill of the contributing members. At weather

scales, improved hurricane predictions have been found

through such superensembles (Krishnamurti et al. 2001).

In climate simulations and predictions, a multimodel

approach also tends to provide the better result (Phillips

and Gleckler 2006). Additionally, ensembles of stand-

alone land process models (constrained by observations

and analyses as prescribed forcing) show smaller biases

and errors than the contributing members (Dirmeyer

et al. 2006). In retrospective analyses (or reanalyses) of

the weather and climate, numerous diagnostic fields are

classified as being related to the model uncertainties, as

opposed to fields closely related to assimilated obser-

vations, and therefore lower quality and require further

validation when evaluated (Kalnay et al. 1996). Compo

et al. (2006) demonstrated that assimilating only surface

pressure with an ensemble filter approach can produce

reasonable weather patterns. It stands to reason then that

an ensemble based on operational analyses diagnostics

(assimilating large amounts of satellite and radiosonde

observations) can produce not only reasonable weather

systems but also an improved representation than any

single analysis. A difficulty to this point is that a collec-

tion of analyses would be required to provide enough

members of such an ensemble.

* Additional affiliation: Science Applications International

Corporation, San Diego, California.
1 Current affiliation: NASA Oak Ridge Associated Universi-

ties Postdoctoral Fellow, NASA Goddard Institute for Space

Studies, New York, New York.

Corresponding author address: Michael G. Bosilovich, Global

Modeling and Assimilation Office, Code 610.1, NASA Goddard

Space Flight Center, Greenbelt, MD 20771.

E-mail: michael.bosilovich@nasa.gov

912 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 10

DOI: 10.1175/2009JHM1090.1

� 2009 American Meteorological Society



The Coordinated Enhanced Observing Period (CEOP;

Koike 2004) has collected concurrent observations and

operational analyses for the period October 2002–

December 2004, in which a primary objective was to

quantify the uncertainty of analyses (Bosilovich and

Lawford 2002). Requests were sent to numerical weather

prediction centers for contributions to the CEOP model

data archive. As of January 2008, eight analyses for the

full period have been submitted. Although a suggested

variable list was included in the request, data structures

were not strictly provided. The contributed data are on

various grids, and each center provides its default anal-

ysis and forecast cycle data. In short, the data are not

immediately comparable among the various centers.

This paper presents the first results of the Multi-model

Analysis for CEOP (MAC). The purpose of MAC is to

homogenize the data files, providing a common spatio-

temporal grid of the analyses, using as many of the most

common variables to facilitate comparisons among the

analyses and observational data. In this framework, we

can then assess the current state of uncertainties among

the analyses.

In addition to homogenizing the data structures, a

mean and variance of the data have been produced. We

hypothesize that the extensive use of observations in

modern analysis/forecast systems will provide com-

monality, and the uncorrelated model errors that exist

in the analyses can be reduced in an ensemble average

of the analyses. If so, the ensemble of analyses can

provide a baseline for comparison of physical quantities

not easily observed or have no independent source.

Comparing an individual analysis to the ensemble will

show the uncorrelated error in that system, whereas

comparing the ensemble to observed data will show the

correlated errors common among analyses (in combi-

nation with observed uncertainty). In this manuscript,

we summarize the homogenization of the data, the de-

velopment of the ensemble and variance, and present

comparisons of key model diagnostics at monthly and

daily time scales.

2. Data and methods

Early in the formulation of the CEOP, the need for

global model analysis data to support science objectives

became apparent. Additionally, the observations being

developed for CEOP would be very useful to the vali-

dation of model analyses and forecasts. Invitations were

sent to the major international numerical weather pre-

diction and data assimilation centers (NWPCs). Ten

centers responded favorably; by January 2008, seven

centers provided 27 months of data for the CEOP En-

hanced Observing Periods 3 and 4 (EOP-3 and EOP-4)

periods (October 2002–December 2004). Two separate

model contributions from one center gave a total of

eight analyses. The contributing centers are as follows:

d Bureau of Meteorology Research Centre (BMRC;

Rikus 2007),
d Centro de Previsão de Tempo e Estudos Climáticos

[The Center for Weather Forecasts and Climate

Studies (CPTEC); Chou et al. 2007],
d Experimental Climate Prediction Center (ECPC)—

Reanalysis II (RII) and Seasonal Forecast Model

(SFM) (Ruane and Roads 2007b),
d Japan Meteorological Agency (JMA; Hirai et al. 2007),
d Meteorological Services of Canada (MSC; Côté et al.

1998; Bélair et al. 2005, 2009),
d National Centers for Environmental Prediction (NCEP;

GCWMB 2003),
d Met Office (UKMO; Milton and Earnshaw 2007).

Each of the contributions was from operational nu-

merical weather prediction centers, except for ECPC,

which is a research institution. ECPC executed two ex-

periments: one using the NCEP–Department of Energy

Global Reanalysis 2 (Kanamitsu et al. 2002b) system,

except with high temporal resolution (called ECPC-RII),

and another with the NCEP SFM (Kanamitsu et al. 2002a;

here called ECPC-SFM). Ruane and Roads (2007a,b)

discuss the specific design of the CEOP experiments.

In general, comparisons of the analyses from the

NWPCs have primarily been through the single-point

Model Output Location Time Series (MOLTS) collo-

cated with CEOP reference sites or through considering

only one model system (Yang et al. 2007; Chou et al.

2007; Rikus 2007; Milton and Earnshaw 2007; Hirai et al.

2007; Meinke et al. 2007; Kato et al. 2007; Bosilovich

et al. 2007). To get at the comparison of global grids, an

ensemble of the analyses was developed for several

purposes. First, the variance of the analyses can provide

a measure of uncertainty in analyses as well as a range

of the state-of-the-art analyses. Second, this ensemble

may make a better benchmark for comparing individ-

ual analyses than simply differencing any one against

another. Last, a synthesis of the model output would

facilitate the use of the data in the broader science com-

munity where increased use of the data should expose

strengths and weaknesses in individual systems and the

ensemble, leading to eventual improvements in the

models.

There are several major differences in the structures

of the model output data that users of the original

CEOP contributions would need to address. The origi-

nal structure of the model data from the NWPCs par-

ticipating in CEOP is archived [in gridded binary

(GRIB1) format] by the Model and Data group at the
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Max Planck Institute (MPI) for Meteorology in Hamburg,

Germany. Aside from the format, there are few sim-

ilarities in the contributed data. For example, Table 1

shows the spatial resolution and grid structure of the data

held in the CEOP archive. Each center provided various

analysis/forecast data in their time series. Many pro-

vided their analysis and a 6-h forecast, but not all pro-

vided an analysis or forecast beyond six hours. As a rule,

the data closest to the analysis provided by each center

(either the analysis or nearest forecast data) were used

for that center’s time series in this comparison. In these

systems, the model error grows in time, so weather will

diverge from that which actually occurred. In this

evaluation, we prefer to use the data closest to the

analysis, so the weather patterns should be more highly

correlated among the analyses. Contrary to this is the

effect of spinup of the forecast, in which the model is

adjusting to the analysis initial conditions (e.g., in the

water cycle; Uppala et al. 2005). Data further into the

forecast cycle (perhaps 24–36 h) would have less spinup

error but more of the model’s background error. The

analysis/forecast data contributions varied among cen-

ters and details on the location of each center’s data

relative to the analysis/forecast cycle are provided in the

appendix.

Not all the centers provided the same output vari-

ables. Forty-eight of the most common meteorology and

flux fields were selected and included in the data pro-

cessing (list is in the appendix). The steps to create the

ensemble and variance are as follows:

1) Generate a 6-hourly dataset for all centers, using

consistent units and timing.

2) Interpolate the 6-hourly data from each center to a

common grid (1.258 lat–lon).

3) Create an ensemble mean and standard deviation of

the 6-hourly time series.

4) Create daily averages and monthly averages from

the 6-hourly ensemble mean.

5) Create daily and monthly averages of the individual

centers.

6) Create daily and monthly standard deviations be-

tween the individual centers.

7) Write the interpolated data for all the centers, the

mean, and the standard deviation at the 6-hourly,

daily, and monthly times in the final formats of Net-

work Common Data Form (NetCDF) and GRIB1.

Sanity checks were performed along the way to ensure

that coding errors in the calculations were not being in-

troduced (e.g., compare to the source data, check the

incoming solar radiation for timing). The appendix dis-

cusses issues and decisions made at each step in trans-

forming the output data and generating the ensemble

mean. The final data includes eight different analyses

located at the same time with consistent grid as well as

ensemble mean and variance of the members at 6-hourly,

daily, and monthly frequencies for the period October

2002–December 2004.

3. Evaluation of the ensemble and members

a. Monthly time scale

Precipitation from analyses can be a useful quantity but

the uncertainties have to be understood (Trenberth et al.

2007; Bosilovich et al. 2008, and the citations therein).

Many of the CEOP science objectives relate to precipi-

tation. At monthly time scales, there are many similari-

ties among the analyses provided here. Figures 1, 2 show

the difference of each of the analyses to the Global

Precipitation Climatology Project (GPCP; Adler et al.

2003) for July 2004. Climate Prediction Center (CPC)

Merged Analysis of Precipitation (CMAP; Xie and

Arkin 1996) precipitation is also provided as a reference

for observational uncertainty. Most of the analyses show

high precipitation biases in the tropical Pacific Ocean,

intertropical convergence zone (ITCZ) and to a lesser

TABLE 1. Grid spacing of individual NWPC model output as archived at MPI showing the number of points (X 3 Y). Also the spatial

resolution in degrees longitude by latitude, the number of levels in the model vertical coordinate, and the documented pressure at the

top (hPa).

1) Surface 2) Atmosphere pressure levels 3) Vertical grid

Points Resolution Points Resolution Levels Top (hPa)

BMRC 480 3 240 0.75 3 ;0.75 480 3 240 0.75 3 ;0.75 29 10

CPTEC 384 3 192 0.9375 3 0.9375 384 3 192 0.9375 3 0.9375 28 2.5

ECPC-RII 192 3 94 1.875 3 ;1.915 144 3 73 2.5 3 2.5 28 2.5

ECPC-SFM 192 3 94 1.875 3 ;1.915 144 3 73 2.5 3 2.5 28 2.5

JMA 640 3 320 0.5625 3 ;0.5625 288 3 145 1.25 3 1.25 40 0.4

MSC 800 3 600 0.45 3 0.30 800 3 600 0.45 3 0.30 58 10

NCEP 360 3 181 1.0 3 1.0 360 3 181 1.0 3 1.0 64 0.266

UKMO 288 3 145 1.25 3 1.25 288 3 145 1.25 3 1.25 38 3
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degree the South Pacific convergence zone (SPCZ). Also

note that CMAP is likewise biased slightly higher than

GPCP in these areas (related to the implementation of

atoll gauge observations; Yin et al. 2004), and the vari-

ance of the ensemble is largest here as well (Fig. 1c). The

MSC and ECPC-SFM means are much closer to GPCP

than the other analyses in this respect. However, the

predominance of these biases across the members leads

to a similar bias pattern apparent in the MAC ensemble

average, pointing to a key consideration of the MAC

ensemble average; systematic errors and biases among

the contributing members will persist into the resulting

ensemble average.

Although some large-scale similarities are apparent,

there are still many differences in the monthly precipi-

tation of the contributing analyses. For example, con-

tinental precipitation anomalies among the members

vary greatly (Fig. 2). Summary statistics of global mean

bias and standard deviation of the difference field are

included in the titles of the figure. With a standard de-

viation of 1.7 mm day21, the MAC ensemble average

has a lower error in this field than any of the contrib-

uting members. This suggests that the uncorrelated er-

rors are being reduced in the ensemble. Figure 2 is

representative of the large-scale variance among the

analyses, in a visual sense. Subtle variations can be ob-

scured in the contour intervals and color shades. Taylor

diagrams (Taylor 2001) provide a quantitative measure

of the skill in the map fields—in this case, lending to

comparison of July 2004 precipitation to GPCP obser-

vations (Fig. 3). Taylor diagrams compare the variance

of a field with their correlation relative to a reference

data field, where the distance to the reference point is a

measure of skill. In this example, GPCP provides the

reference field, and CMAP is also included as a data

point. The linear distance from the reference point (1, 1 in

Fig. 3) shows how closely a model approximates the ref-

erence data (see also Phillips and Gleckler 2006 and

Bosilovich et al. 2008). This shows that the MAC ensemble

average is closer to GPCP than any of the ensemble

members, generally, with high correlation and variance

closer to that of GPCP for July 2004.

Figure 4 extends this discussion across the entire

October 2002–December 2004 period. The time series

FIG. 1. July 2004 monthly-mean (a) GPCP precipitation, (b) difference of GPCP and CMAP precipitation,

(c) standard deviation of the ensemble of monthly-mean MAC ensemble members, and (d) difference of GPCP and

MAC precipitation (mm day21) . For reference, the area average (aave) and the standard deviation (sd) of the fields

in each map are shown in the title of each panel.
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FIG. 2. As in Fig. 1, but for the July 2004 monthly precipitation differences for each of the ensemble members from

GPCP merged precipitation data for (a) UKMO, (b) NCEP, (c) MSC, (d) JMA, (e) ECPC-SFM, (f) ECPC-RII, (g)

CPTEC, and (h) BMRC.
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of standard deviation (Fig. 4a) of the monthly-mean

precipitation difference shows that the MAC ensemble

average is clearly lower than any of the individual ana-

lyses. The seasonal variability of the standard deviation is

also fairly small compared to large seasonal variations in

some of the analyses (such as MSC). Also, there is a large

shift of several analyses in June 2003, in which a sub-

stantial increase in the standard deviation may also affect

the MAC ensemble statistics. However, the shift of the

MAC is a lower magnitude than these individual sys-

tems. ECPC-RII shows a strong annual cycle with much

larger standard deviations in boreal summer than oth-

erwise. Correlation between the MAC ensemble pre-

cipitation and GPCP is generally higher than any of the

contributing members (Fig. 4b). (Anomaly correlations

would have been more desirable but difficult to interpret

with just two years of data to generate anomalies to the

mean annual cycle.) However, there are a few months in

the boreal winter of 2004 when NCEP’s precipitation

correlation is nearly identical to the MAC ensemble

average, and the UKMO correlations are also generally

higher than other analyses.

Outgoing longwave radiation (OLR) is a critical cli-

mate diagnostic, and global observations are readily

available. However, uncertainty persists in both the ob-

servations and model representation of OLR. Trenberth

et al. (2009) summarize the uncertainty of OLR ob-

servations and the comparison against existing long re-

analyses. The reanalyses vary greatly compared to the

observations. Figures 5, 6 compare the July 2004 monthly

differences of the ensemble members and mean OLR

compared with surface radiation budget (SRB; Cox et al.

2006; Lin et al. 2008) merged observational data product

[and Clouds and the Earth’s Radiant Energy System

(CERES) Earth Radiation Budget Experiment (ERBE)-

like OLR is provided as a reference of another observed

data product (Wielicki et al. 1996; Loeb et al. 2001)]. As

opposed to the precipitation comparison, wide variations

among the models are apparent (Fig. 6). The JMA sys-

tem exhibits systematic positive biases, whereas the

UKMO shows systematic negative bias. NCEP, UKMO,

and MSC biases are strongest in the tropics but of dif-

ferent signs. Although these latter three have the lowest

standard deviations for this month, the MAC ensemble

FIG. 3. Taylor diagrams (Taylor 2001) for global, global land, global ocean, and tropics precipitation. GPCP

merged precipitation is the reference dataset. The diagrams compare spatial correlation (to GPCP) of the analysis to

standard deviation normalized by the reference dataset for July 2004 monthly means. Linear distance to the (1, 1)

point is a measure of skill in reproducing the reference dataset. CMAP (gray dot) is also provided as a measure of

uncertainty in the observations.

AUGUST 2009 B O S I L O V I C H E T A L . 917



produces the lowest standard deviation of the difference

from SRB than any single contributor.

Figure 7 shows the time series of global standard

deviation and spatial correlation of the monthly differ-

ences between each member and the ensemble mean

with SRB OLR. Spatial correlation values show how

well the patterns match (note that seasonality generally

adds to these correlation values). In spatial correlation,

the ensemble mean has higher correlations than any

individual model. However, the standard deviation is

less clear. During boreal winter NCEP OLR has less

error than the MAC ensemble but slightly more error

in summer. Further, the UKMO, MSC, and JMA OLR

data are all generally close to the MAC ensemble mean.

In contrast to the precipitation statistics (Fig. 4) that

show that the systems are distributed along a range of

values, the OLR statistics show two distinct clusters in

the systems. The ECPC systems and CPTEC have

markedly higher error in OLR. This result begs the

question, will selectively choosing the statistically better

systems improve the ensemble mean?

b. Selective ensembles

Using Global Soil Wetness Project (GSWP-2) offline

land models, Guo et al. (2007) tested the sensitivity of the

ensemble average to the soil moisture quality of the en-

semble members. It was shown that adding better (higher

correlation, lower error) members to an ensemble aver-

age reduced the error of the ensemble; however, adding

data with lower skill did not significantly degrade the

ensemble while the better systems were in place. There

are several differences between that study and the pres-

ent data. First, Guo et al. (2007) were using the long

reanalysis data and included more members than the

present study. The offline models all used similar and

prescribed atmospheric forcing. The prescribed forcing

likely reduces the degrees of freedom in the simulated

realizations, compared to the three-dimensional data

assimilation data in the analysis here. The distribution of

error evaluated by Guo et al. (2007) varied evenly across

the ensemble members. This is somewhat different from

the error we see generated in the three-dimensional op-

erational analyses, where Fig. 7 shows that the OLR error

delineates a subset of analyses that are less skillful than

the rest. Precipitation error, on the other hand, does show

a more uniform distribution across the members (Fig. 4).

Here, we test the MAC ensemble average against a

selective member ensemble, determined from each

systems statistics in Fig. 4 and Fig. 7, using the 27-month

means of the statistics to rank the systems. In each

analysis, we remove the lowest three scores from the

comparison—for precipitation, BMRC, CPTEC, and

ECPC-RII are eliminated and for OLR, ECPC-SFM,

ECPC-RII, and CPTEC are eliminated (BMRC did not

provide OLR). Figures 8a,b shows the time series of

statistics, including an ensemble mean of the five most

skillful analyses precipitation for the selective ensemble.

The spatial correlation of precipitation does indicate an

apparent improvement (by approximately 0.01) on av-

erage for the whole period. However, this seems quite

small compared to the low values of the data that were

excluded. The MAC ensemble standard deviation was

already a standout compared to the ensemble members.

A selective ensemble does reduce the error but only by a

small margin. Also in June and July 2003, the selective

ensemble standard deviation is slightly higher than that

of the full MAC ensemble.

For OLR spatial correlation, there are two distinct

clusters of systems (higher and lower); however, all

FIG. 4. Standard deviation of the monthly global differences

from (a) GPCP and correlation to (b) GPCP for the MAC en-

semble mean, each ensemble member, and CMAP merged ob-

servations (gray).
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are fairly high correlations, with the lowest average of

monthly correlations being 0.91. The MAC ensemble at

0.98 correlation to SRB is higher than any individual

system. Removing the lowest three systems from the

ensemble does not increase the skill of the ensemble

spatial correlation (Fig. 8d). However, in standard de-

viation (Fig. 8c), where NCEP winter months’ OLR

error shows better skill than the MAC ensemble, the

selective ensemble shows some improvement beyond

the NCEP skill. The standard deviation or the ensem-

bles is reduced on average from 8.1 to 7.4 W m22

(a difference of ;0.6 W m22); therefore, for some cases,

a selective ensemble may provide better results. Al-

though this is an improvement, and the selective en-

semble skill is higher than any contributing member, the

improvement is generally small in comparison to the full

ensemble. The difficulty with selective ensembles is that

there is no way to tell to what degree any single member

may contribute to the ensemble or in what variable at

any given time (e.g., seasonality, as in the precipitation

standard deviation; Fig. 8a). Because any improvements

may be small, the full ensemble will be more reliable in

most cases. However, if the ensemble size increases, and

generally error-prone members are identified in specific

process studies, selective ensembles may be justified.

The JMA OLR statistics show a general improvement

over the period (Fig. 7). The JMA OLR is also included

in the selective ensemble. However, in neither of the

ensembles is an improvement of the statistics in time

noticeable (Figs. 8c,d). The ensembles’ statistics are

steadier compared to the individual analyses. This sug-

gests that the individual effect of the improvement of

any one operational analysis in time has limited effect

on the ensemble of analyses.

c. Synoptic time scale

The previous analysis shows that the MAC ensemble

can generally produce monthly data that compares

more favorably to global datasets. Because the analyses

assimilate observations, weather patterns should also be

resolved in the ensemble. However, the averaging of the

ensemble may smooth fields, such as precipitation, at

the 6-hourly and daily time scales. Precipitation should

be a difficult quantity to compare with at these time

FIG. 5. July 2004 monthly TOA OLR (W m22) from (a) SRB, (b) the difference of Aqua CERES ERBE-like OLR

from SRB, (c) the standard deviation of monthly-mean MAC ensemble members, and (d) the difference of the MAC

ensemble from SRB. The mean and standard deviation of the field shown in each map are summarized above the

maps.
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FIG. 6. As in Fig. 5, but for the July 2004 monthly TOA OLR differences for each of the ensemble members from

SRB OLR for (a) UKMO, (b) NCEP, (c) MSC, (d) JMA, (e) ECPC-SFM, (f) ECPC-RII, and (g) CPTEC. (BMRC

did not provide OLR.)
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scales. The CPC provides a 1/48 daily gridded gauge-

only precipitation dataset for the United States (Shi

et al. 2003). We evaluate the daily time series of pre-

cipitation over the Mississippi River basin (MRB) and

subbasins for the period January 2003 through De-

cember 2004.

Figure 9 shows the MRB on the MAC grid, on which

we will focus this evaluation. Five subbasins contribute

to the MRB drainage into the Gulf of Mexico. The

gauge data were box-averaged up to the MAC grid for

comparison purposes. For each daily basin average of

the CPC observations over two years, the data are

compared to the corresponding daily basin average of

each model and the ensemble. Figure 10 shows the

scatter diagram of the two years of daily time series

data. It seems quite remarkable that the MAC ensemble

average is clustered so closely to the observations at daily

time scales. In some models, clear biases are apparent,

positive (ECPC-RII, JMA, NCEP) and negative (ECPC-

SFM). Most individual models have noticeable scatter in

the data points. ECPC-RII and ECPC-SFM tend to be

some of the coarser source datasets (Table 1), which may

have some influence on their results. However, it is dif-

ficult to conclude much about the influence of resolution

in this evaluation because the BMRC data have more

fine resolution than ECPC but also lower skill.

Table 2 shows the statistics of the area-averaged daily

time series for the MRB and each of the subbasins. The

MAC ensemble bias tends to be small, but positive,

following the consensus of the ensemble members. Note

that the MAC area-weighted bias cannot be computed

by linear averaging the area-weighted bias of each

member, in part because of missing data in the source

data (see the appendix). Even in the smaller subbasins,

the MAC ensemble time series has some of the highest

temporal correlation to the observations, and the stan-

dard deviation of the time series differences is always

the lowest. These temporal statistics suggest that the

MAC ensemble precipitation is generally consistent

with the weather-scale observations.

The previous statistics show the area-average com-

parison of the time series to the gauge precipitation

record. However, one possibility is that the simple linear

ensemble dilutes the gradients in the occurrence of

measurable precipitation across the basin. One way to

test this is to compute spatial statistics for each day,

between the models and the gauge observations. Spatial

correlation and standard deviation of the difference

from the gauge observations across the MRB domain

are computed each day of the 2003/04 period. The daily

time series are quite variable, so to compensate, Fig. 11

shows the monthly average of the daily spatial statistics.

In the standard deviation of the difference, the MAC

ensemble is nearly always the lowest value (low value

indicates small squared difference from the observa-

tions). This is most apparent in the warm season, when

the errors are generally larger than in the other seasons.

In the winter season, the analyses start to group to-

gether and their values are generally smaller, but the

ensemble still tends to be the smallest (or nearly the

smallest) error.

In spatial correlation, there is more separation among

the different analyses throughout the annual cycle

(Fig. 11b). Some of the analyses that perform better for

the whole period (see Table 2) are closer to the high

values of the MAC. In some months (generally in the

winter), the MAC ensemble is not the highest spatial

correlation. In the winter, dynamics and initial conditions

FIG. 7. Standard deviation of the monthly global differences

from (a) SRB OLR and (b) correlation to SRB OLR for the MAC

ensemble mean, each ensemble member providing the quantity,

and the CERES ERBE-like OLR retrieved from Aqua observa-

tions (gray).

AUGUST 2009 B O S I L O V I C H E T A L . 921



of the data analysis provide skillful forecasts that allow

more accurate precipitation occurrence. In the summer,

physical processes and mesoscale systems govern the

observed precipitation, thus the forecasts and analyses

have more uncertainty. The significance of Fig. 9 is that

the daily basin-area spatial correlation represents the

scale at which synoptic weather is producing measur-

able precipitation, so weather information (occurrence

and timing) is not lost in the simple linear ensemble

of the analyses, at least at the daily scale. Given that

the summer precipitation patterns are more governed

by the physical parameterizations than the dynamical

forcing, it seems reasonable that the overwhelming

source of uncertainty in the analyses is the essentially

randomness of the convective precipitation. The en-

semble result reduces the random errors and compares

better with observations.

Figures 12, 13 compare precipitation of two individ-

ual days, one summer (10 July 2003) and one winter

(23 December 2004), from the MAC to observations.

These two days were chosen because they exhibit some

of the largest precipitation amounts when averaged over

the MRB. For 10 July 2003, the primary maximum of

precipitation is reasonably well located in the central

United States, but the MAC ensemble contours do not

show the detailed structure apparent in the observations;

it also underestimates the intensity at the core of the

event. UKMO is chosen as a member of the ensemble,

with reasonable statistics. In the July case, UKMO does

produce a larger amount of precipitation in the core but

misses the southward extent of the event. The standard

deviation of the daily MAC precipitation resembles the

mean, with the largest values near the core of the rain

event. Statistically speaking, the MAC data have a higher

correlation to and a smaller variance than the UKMO

data for the MRB but not without some deficiency.

In the December example (Fig. 13), a strong frontal

system extends across the United States, west of the

FIG. 8. Comparison of the statistics of the MAC ensemble (black line) compared to a selective ensemble (gray dashed line), and the

range of values contributing to the full ensemble and the selective ensemble. Standard deviation from (a) GPCP, (b) correlation to GPCP,

(c) standard deviation from SRB OLR, and (d) correlation to SRB OLR. CMAP precipitation and CERES ERBE-like OLR from Aqua

are included on the respective panels for reference. Note that UKMO monthly precipitation is missing from December 2002, leaving only

a 4-member selective ensemble in that month. Also, UKMO monthly OLR is missing from December 2002 and October–December 2004,

leaving only a 3-member selective ensemble in those months.
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Appalachian Mountain chain. A secondary maximum

of precipitation is evident in the southeastern United

States. The MAC ensemble seems to locate the main

frontal precipitation well, but the width of the core is

wider than apparent in the gauge observations. The

UKMO has more precipitation than observed along

the southern extent of the core. The MAC ensemble

has little resemblance to the secondary southeastern

maxima, whereas the UKMO system does have more

precipitation there (though no closed contours are evi-

dent). Even with these apparent differences, there is

little statistical difference between the MAC ensemble

and the UKMO data, for this case. The standard devi-

ations of the ensemble precipitation are generally re-

lated to the occurrences of precipitation and the systems

that generate the precipitation. Table 3 shows the

standard deviation and spatial correlation for the MAC

and the individual members in the MRB on these two

dates.

Roads and Betts (2000) compared the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF)

and NCEP reanalysis water budgets over the MRB. All

components of the regional water budgets had differences

between them. The level of that evaluation cannot be

duplicated with the present analyses because not all

data are available (notably, a soil moisture storage

diagnostics among the systems is not uniform and total

runoff/drainage water would also be required). Yet, the

results at the synoptic time scale suggest that much may

be learned about regional water budgets from an en-

semble of analyses approach. The evaluation here does

not address the diurnal cycle of precipitation in ana-

lyses. Ruane and Roads (2007a,b) evaluate the re-

analyses’ diurnal cycles globally and regionally, finding

significant deficiencies in both the phase and amplitude

of diurnal precipitation. Although 6-hourly data are

available in this multimodel dataset, only 27 months

may limit certain statistics.

d. Global energy budget

Nearly all of the systems provide the components to

evaluate the earth’s global energy budget components.

Trenberth et al. (2009, henceforth TFK) recently re-

vised assessments of the energy budget components

based on newly available data and models. The assess-

ment used GPCP, International Satellite Cloud Clima-

tology Project (ISCCP) and CERES observations. The

TFK period of interest was from March 2000 to May

2004. We compare the 2-yr (January 2003–Dec 2004)

globally averaged energy budget from the ensemble

members and mean to the representative values devel-

oped by TFK.

Table 4 shows the major components of the earth’s

global energy budgets at the surface and top of the at-

mosphere (TOA) as well as precipitation (representa-

tive of atmospheric latent heat) separated for the globe,

land, and ocean. At the top of the atmosphere, all

models use much the same solar forcing. The analyses

tend to overestimate OLR and underestimate reflected

shortwave compared to the TFK estimates, which sug-

gests that the clouds or the effect of clouds on the ra-

diation is underestimated in the ensemble of analyses.

The surface latent heating in the ensemble members is

generally higher than the TFK estimate, and it would

appear that this is driven by too much downward

shortwave radiation at the surface. There is consider-

able variability of the land surface turbulent fluxes, and

the ECPC-RII data appears to be an outlier.

The ensemble average downward and upward long-

wave radiations at the surface exceed the TFK estimates

by roughly the same amounts. Both have smaller biases

than the surface latent heat and downward shortwave

radiation. The downward longwave radiation at the

surface has a substantial amount of variability, whereas

the upward longwave radiation is consistent, related to

the use of prescribed SSTs. TFK estimated the net

heating of the global surface to be 0.9 W m22. The

variability of net surface heating across each of the

member analyses is substantial, ranging from strong

warming to strong cooling of the surface. However, the

MAC ensemble average net surface heating is compa-

rable to the TFK estimate. Note that net TOA heating

is provided from the ensemble; however, with fewer

systems contributing to that quantity, total heating of the

atmosphere may have additional uncertainty. The ocean

imbalance at the surface is a combination of prescribed

SST acting as a heat source/sink for the atmosphere.

Also, the net surface heating over land is large in some

models. This may be the result of either not enough of

FIG. 9. Five subbasins of the MRB: Red–Arkansas (RA), Mis-

souri (MS), Upper Mississippi (UM), Ohio (OH), and the Lower

Mississippi (LM). The outlines also show the MAC 1.258 grid. The

collective region is referred to as the MRB.
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the output data considered in the analysis (such as flux of

heat related to snow), inconsistencies in the single land/

sea mask generated for this purpose, or the analysis’s

effect on the fluxes. The main point is that operational

analyses demonstrate substantial bias and variability in

many global water and energy budget terms.

4. Summary and conclusions

The Multimodel Analysis for CEOP (MAC) com-

prises eight operational global analyses as well as their

ensemble mean and standard deviation. The method to

unify the data structures in space and time has been

discussed here. The goal of the project is to simplify the

comparisons of the analyses with existing observations

and compare among the different analyses. A similar

effort has begun to take shape at NCEP, primarily fo-

cusing on the state variables (Ebisuzaki et al. 2007). We

hypothesized, based on the results of several previous

studies using multiple model simulation results, that

the ensemble mean of the analyses should provide data

that are as skillful as or better than the most skillful

FIG. 10. Scatter diagrams comparing area-averaged MRB daily observed precipitation (mm day21) with the MAC ensemble and with all

of the contributing member data, by panel. The solid line indicates the linear fit of the data points and the dashed line indicates 1:1.
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contributing member. This is founded on the use of

similar observations in each of the analyses, so that

random errors in each system will be minimized when

ensemble averaged. Testing of the data focused on

precipitation and outgoing longwave radiation, vari-

ables that are predominantly driven by the model physics

but also have reliable global observations datasets for

verification.

At monthly time scales, we find that the statistics

produced by the ensemble of the analyses are similar to

or better than the best contributing member. This is

generally true for the duration of the period; however,

in OLR, the NCEP analysis shows slightly better results

compared to the full ensemble during boreal winter.

The global precipitation of the ensemble mean is closer

to GPCP than any of the members. Comparing the

members and ensemble to the global energy budget

estimate (Trenberth et al. 2009) shows which terms in

the analyses are similar and which vary. Although the

global net surface energy from any given system may

show imbalance, the ensemble net surface energy is in-

line with the TFK estimate. The ensemble also shows

the best (or nearly so) temporal and spatial statistics

compared to daily gauge observations in the well-

instrumented Mississippi River basin, even to the level

of the subbasins.

The effect of selectively choosing the most skillful

ensemble members to create a new ensemble is also

tested. Generally speaking, the improvement that is

gained by choosing the most skillful members is small

and may be exaggerated in the present tests, given that

the number of members is not large. In one case, where

there is a clear separation in skill between two sets of

analyses, the selective ensemble did produce notice-

ably smaller error. However, even that improvement is

relatively small when comparing the range of error in

the members that were not included in the selective

ensemble.

Although the ensemble mean of the analyses does

compare well with the observations presented here, it

does so by retaining the information in each analysis that

FIG. 11. Time series of monthly means of the (a) daily standard

deviation of MRB area differences (mm day21) and (b) daily

spatial correlation of the MRB-area precipitation from each model

system to the gauge observations.

TABLE 2. Statistics from the 2-yr aave time series of daily pre-

cipitation of each analysis system and the ensemble (MAC) com-

pared to gauge observations. Mean bias is the mean difference

from observations (mm day21). Std dev is the standard deviation of

the difference from observations (mm day21). Correlation is the

temporal correlation to the observed time series.

Mean bias MRB RA MS UM OH LM

BMRC 20.29 20.77 20.09 20.26 0.14 20.85

CPTEC 0.03 20.01 0.19 0.01 0.22 20.80

ECPC-RII 0.66 0.63 0.61 0.50 0.77 0.92

ECPC-SFM 21.02 21.31 20.81 20.98 20.77 21.66

JMA 0.57 0.83 0.34 0.39 0.64 1.16

MSC 0.11 0.12 20.02 0.22 0.21 0.26

NCEP 0.70 0.48 0.50 0.58 1.30 1.07

UKMO 0.46 0.38 0.45 0.37 0.50 0.72

MAC 0.12 0.04 0.14 0.10 0.38 0.10

Std dev MRB RA MS UM OH LM

BMRC 1.16 2.04 1.03 2.45 2.55 3.57

CPTEC 0.91 1.92 1.05 1.78 2.47 3.25

ECPC-RII 1.35 2.43 1.46 2.21 3.03 4.07

ECPC-SFM 1.14 2.19 1.06 2.23 2.23 3.53

JMA 0.98 1.77 0.94 1.47 2.11 3.82

MSC 0.57 1.54 0.73 1.40 1.80 2.68

NCEP 0.76 1.33 0.80 1.38 1.99 2.80

UKMO 0.65 1.37 0.83 1.34 1.59 2.44

MAC 0.52 1.11 0.54 1.14 1.47 2.32

Correlation MRB RA MS UM OH LM

BMRC 0.84 0.81 0.80 0.72 0.88 0.82

CPTEC 0.90 0.84 0.82 0.85 0.87 0.85

ECPC-RII 0.86 0.85 0.87 0.85 0.85 0.78

ECPC-SFM 0.85 0.79 0.78 0.78 0.90 0.84

JMA 0.93 0.90 0.91 0.92 0.93 0.84

MSC 0.97 0.91 0.92 0.93 0.94 0.91

NCEP 0.95 0.94 0.93 0.93 0.95 0.90

UKMO 0.97 0.92 0.92 0.91 0.94 0.94

MAC 0.97 0.95 0.95 0.95 0.96 0.92
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is correlated. The higher skill of the ensemble average

indicates that the random or system-specific errors in the

contributing members are minimized. However, biases

that are correlated—such as high tropical precipitation,

high global incoming shortwave radiation at the surface,

and high surface evaporation—are retained in the en-

semble average. Presumably, as the systems improve

and these systematic biases are reduced, the ensemble of

FIG. 12. Daily precipitation (mm day21) for 10 Jul 2003 (a) gauge observations, (b) MAC ensemble, (c) MAC

minus gauge, (d) UKMO minus MAC, (e) UKMO daily mean, (f) UKMO minus gauge, and (g) the standard

deviation of the ensemble mean.

926 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 10



analyses would converge to a less-biased depiction of

reality before any one analysis might. It is also inter-

esting to note that the large monthly variations of stan-

dard deviation or correlation in some of the members

are minimized in the ensemble mean. Also, trends in the

statistical comparison of individual analyses to the ob-

servations (e.g., apparent in the JMA OLR) do not ap-

pear to be reflected in the MAC ensemble statistics.

Since preparing this initial evaluation of the data and

procedures, the European Centre for Medium-Range

Weather Forecasts (ECMWF) and the Global Modeling

and Assimilation Office (GMAO) have provided data

FIG. 13. As in Fig. 12, but for 23 Dec 2004.
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TABLE 3. Daily statistics for the MRB precipitation of each analysis and the MAC ensemble compared to gauge observations. For each

day, the (top) correlations and the (bottom) standard deviations are shown.

MAC BMRC CPTEC ECPC-RII ECPC-SFM JMA MSC NCEP UKMO

10 Jul 2003 0.78 0.22 0.56 0.52 0.45 0.79 0.74 0.50 0.75

23 Dec 2004

3.75 5.68 4.45 5.65 4.91 4.39 4.11 5.05 4.29

0.91 0.84 0.82 0.90 0.88 0.84 0.90 0.93 0.92

3.22 4.34 5.48 3.84 3.82 3.46 3.97 3.09 3.39

TABLE 4. Global, land, and ocean aave of energy budget components for each of the analyses, the ensemble mean (MAC), and the

values reported by TFK. Objectively Analyzed Air–Sea Fluxes (OAFlux) (ocean; Yu 2007; Yu and Weller 2007; Yu et al. 2008), SRB, and

GPCP global average of January 2003–December 2004 are also included in the row labeled ‘‘Observations.’’ MAC indicates the global

average of the gridded ensemble data. The std dev is the standard deviation of the global averages of the members’ values in the table.

Units are W m22, except for precipitation (Precip, mm day21). NetETsSfc and Nettoa indicates the net downward heat flux at the surface

and TOA, respectively. Note that the net TOA heating in the ensemble is computed from fewer models than net surface. The radiation

components (R) are shown for shortwave (S) and longwave (L) directed upward (u) and downward (d) at the surface (subscript sfc) and

TOA (subscript toa). Also provided are are latent heat (LH) and sensible (SH) at the surface, directed positive upward.

Global LH SH RLdsfc RLusfc RSdsfc RSusfc RLutoa RSdtoa RSutoa Netsfc Nettoa Precip

BMRC 92 18 350 400 167 25 — — — 219.3 — 3.32

CPTEC 99 22 347 401 206 24 244 — 100 7.4 22.6 3.40

ECPC-RII 96 7 337 400 202 24 247 341.4 92 11.9 2.9 3.21

ECPC-SFM 84 17 333 400 207 27 249 341.4 91 13.0 1.5 2.47

JMA 90 17 320 398 204 25 257 341.4 88 26.2 23.8 3.15

MSC 91 20 334 397 201 28 249 342.0 94 20.6 20.5 2.61

NCEP 95 9 332 398 208 29 248 — 87 8.5 6.0 3.26

UKMO 95 16 345 399 180 22 235 341.5 105 27.2 1.5 3.58

MAC 92 16 337 399 197 26 247 341.5 93 1.1 0.9 3.12

Std dev 4.6 5.3 9.8 1.3 15.2 2.4 6.6 0.2 6.5 11.3 3.3 0.38

TFK 80 17 333 396 184 23 238.5 341.3 101.9 0.9 0.9 2.76

SRB/GPCP — — 343 398 182 22 241 341.4 — — — 2.63

Land LH SH RLdsfc RLusfc RSdsfc RSusfc RLutoa RSdtoa RSutoa Netsfc Nettoa Precip

BMRC 51 46 326 401 212 40 — — — 01 — 2.40

CPTEC 55 54 333 401 224 44 253 — 106 2.3 215.3 2.46

ECPC-RII 87 23 322 393 208 42 246 343.2 105 12.4 27.5 2.81

ECPC-SFM 54 42 313 396 232 45 255 343.2 89 7.4 20.6 1.95

JMA 53 27 301 391 219 46 260 343.1 95 1.7 211.9 2.45

MSC 49 43 319 392 206 43 250 342.0 103 22.6 210.5 2.34

NCEP 65 23 322 392 208 44 249 — 101 5.8 27.2 2.84

UKMO 58 31 328 396 196 38 240 343.4 104 1.2 20.9 2.64

MAC 59 33 320 395 214 43 250 343.0 100 3.5 27.8 2.48

Std dev 12.2 18.0 9.9 3.9 11.3 2.7 6.3 0.5 6.1 4.8 5.5 0.28

TFK 39 27 304 383 185 40 232 330.2 113 0.0 215.6 —

SRB/GPCP — — 329 402 192 35 243 343.1 — — — 2.30

Ocean LH SH RLdsfc RLusfc RSdsfc RSusfc RLutoa RSdtoa RSutoa Netsfc Nettoa Precip

BMRC 109 7 359 399 149 20 — — — 227.3 — 3.69

CPTEC 117 9 352 400 199 15 240 — 98 9.5 2.9 3.79

ECPC-RII 99 11 343 403 200 17 247 340.6 86 11.6 7.2 3.38

ECPC-SFM 95 6 341 402 197 19 247 340.6 91 15.4 2.4 2.69

JMA 105 12 327 401 198 17 256 340.6 85 29.5 20.5 3.43

MSC 108 11 341 399 199 22 248 341.8 90 0.3 3.6 2.72

NCEP 106 4 336 400 208 23 248 — 81 9.5 11.8 3.43

UKMO 110 10 352 400 173 16 233 340.6 105 210.7 2.5 3.96

MAC 106 9 344 401 191 19 246 340.9 90 0.1 4.4 3.38

Std dev 6.5 2.9 10.2 1.4 19.7 2.9 7.2 0.6 8.2 14.7 4.0 0.47

TFK 97 12 343 401 184 17 241 345 98 1.0 6.8 —

Observations 92 10 349 396 178 17 240 341 — — — 2.78
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covering the period evaluated here. These are currently

being processed, so that version two of this dataset will

include 10 members. At this point, the existing long

reanalyses from NCEP and JRA-25 have been excluded

to mainly focus on operational systems. However, these

could also be included as some point in the future.

Long retrospective analyses were developed to address

the issue of the changing modeling and data assimilation

systems in operational analyses, so that climate studies

could be undertaken (Bengtsson and Shukla 1988;

Trenberth and Olson 1988). In this short time series, we

see shifts that would be major changes to any individual

system minimized in the ensemble mean so that that a

long consistent climate record might be formed through

an ensemble of analyses (which could also include re-

analyses). However, there were no major changes to the

operational observing system during this period of in-

vestigation. Reanalyses are inherently resource-intensive

projects, so that only a small number have been com-

pleted (Kalnay et al. 1996; Uppala et al. 2005; Onogi

et al. 2007). New reanalyses are being prepared and

should continue well into the future. However, older

reanalyses eventually end [e.g., 40-yr ECMWF Re-

Analysis (ERA-40) is not available later than August

2002]. The notion of a multimodel ensemble of opera-

tional analyses would allow the large number of mete-

orological agencies worldwide to contribute their data

to a climate record, regardless of variations in the sys-

tem being used. Given that large numbers of models are

already being contributed to support Intergovernmental

Panel on Climate Change (IPCC) projections, systems

to handle these data and to make them available to the

community are tractable. To accomplish such a reposi-

tory would also require an investment of time and re-

sources from already overburdened numerical weather

prediction centers. However, the results presented here

suggest that the investment would be useful to both the

research community and to the contributing centers in

their own system development efforts.
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APPENDIX

Data Processing

In section 2, seven steps of the process for reformat-

ting the data are outlined. The following subsections

provide further details on the procedures and methods.

The source data for the models is documented at the

CEOP Data Management Center (available online at

http://www.eol.ucar.edu/projects/ceop/dm/model/model_

chars.html) and also at the Max Planck Institute Model

and Data Center (available online at http://www.mad.

zmaw.de/projects-at-md/ceop/).

a. Six-hourly dataset (step 1)

For each NWPC dataset, a GRIB table was used to

identify and locate the subset of high-priority variables

listed in the Table A1. The minimum forecast time avail-

able for each variable of the center was then pulled from

the raw model data using ‘‘wgrib.’’ The minimum forecast

time typically available was the analysis (0-h forecast) for

the instantaneous variables and the 0–6 hourly forecast for

the average/accumulation (ave/acc) variables. Some sig-

nificant exceptions include the following:

d The CPTEC data, which was only run once a day

starting at 1200 UTC, and no data were available for

12 h. Thus, the data is a 12-hourly forecast at 0000

UTC, an 18-h forecast at 0600 UTC, a 24-h forecast at

1200 UTC, and a 36-h forecast at 1800 UTC. Similarly,

the ave and acc variables from 0000 to 0600 UTC are a

12–18 hourly forecast, and so on.
d The MSC data, which were only run once a day

starting at 1200 UTC. The instantaneous surface var-

iable data at 1200 UTC are an analysis/0-h forecast, at

1800 UTC a 6-h forecast, at 0000 UTC a 12-h forecast,

and at 0600 UTC an 18-h forecast. The upper-air data,

however, was not available at 0600 and 1800 UTC; the

1200 UTC data are an analysis/0-h forecast and the

0000 UTC data are a 12-h forecast. The MSC ave and

acc variables from 1200 to 1800 UTC are a 0–6 hourly

forecast, and so on.
d Several NCEP and ECPC RII and SFM instantaneous

surface variables are a 6-h forecast rather than an

analysis/0-h forecast.
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TABLE A1. Location in the forecast cycle of each NWPC’s variables included in the MAC, including variable description and units.

Abbreviations are defined as follows: forecast (fcst) and analysis (anl).

Description Units BMRC CPTEC ECPC-RII ECPC-SFM JMA MSC NCEP UKMO

Surface

pressure

Pa analysis 12-h fcst1 6-h fcst 6-h fcst analysis anl/6-h fcst1 analysis analysis

Mean sea level

pressure

Pa analysis analysis analysis analysis

Surface air

temperature

K analysis 12-h fcst1 6-h fcst 6-h fcst analysis anl/6-h fcst1 6-h fcst analysis

Surface skin

temperature

K analysis 12-h fcst1 6-h fcst 6-h fcst anl/6-h fcst1 6-h fcst analysis

Surface air

moisture

kg kg21 analysis 12-h fcst1 6-h fcst 6-h fcst analysis anl/6-h fcst1 6-h fcst analysis

Surface eastward

wind

m s21 analysis 12-h fcst1 6-h fcst 6-h fcst analysis anl/6-h fcst1 6-h fcst analysis

Surface northward

wind

m s21 analysis 12-h fcst1 6-h fcst 6-h fcst analysis anl/6-h fcst1 6-h fcst analysis

Precipitation kg m22 s21 0–6-h avg 12-h fcst1 0–6-h avg 0–6-h avg 6-h fcst 3-h fcst1 0–6-h avg 0–6-h acc

Convective

precipitation

kg m22 s21 0–6-h avg 0–6-h avg 0–6-h acc

Surface runoff kg m22 12-h fcst1 0–6-h avg 0–6-h avg 3-h fcst1 0–6-h acc 0–6-h acc

Liquid equivalent

snow depth

kg m22 analysis 6-h fcst 6-h fcst anl/6-h fcst1 6-h fcst

LH Flux W m22 0–6-h avg 12-h fcst1 0–6-h avg 0–6-h avg 0–6-h avg 3-h fcst1 0–6-h avg 0–6-h avg

SH Flux W m22 0–6-h avg 12-h fcst1 0–6-h avg 0–6-h avg 0–6-h avg 3-h fcst1 0–6-h avg 0–6-h avg

Surface incoming

shortwave

W m22 0–6-h avg 12-h fcst1 0–6-h avg 0–6-h avg 0–6-h avg 3-h fcst1 0–6-h avg 0–6-h avg

Surface incoming

longwave

W m22 0–6-h avg 12-h fcst1 0–6-h avg 0–6-h avg 0–6-h avg 3-h fcst1 0–6-h avg 0–6-h avg

Surface reflected

shortwave

W m22 0–6-h avg 12-h fcst1 0–6-h avg 0–6-h avg 0–6-h avg 3-h fcst1 0–6-h avg 0–6-h avg

Surface outgoing

longwave

W m22 0–6-h avg 12-h fcst1 0–6-h avg 0–6-h avg 0–6-h avg 3-h fcst1 0–6-h avg 0–6-h avg

TOA longwave

outgoing

W m22 12-h fcst1 0–6-h avg 0–6-h avg 0–6-h avg 3-h fcst1 0–6-h avg 0–6-h avg

TOA shortwave

incoming

W m22 0–6-h avg 0–6-h avg 0–6-h avg 3-h fcst1 0–6-h avg

TOA shortwave

outgoing

W m22 12-h fcst1 0–6-h avg 0–6-h avg 0–6-h avg 3-h fcst1 0–6-h avg 0–6-h avg

Total cloud cover (0–1) 12-h fcst1 0–1-h avg 0–1-h avg analysis anl/6-h fcst1 0–6-h avg analysis

Total column

water vapor

kg m22 analysis 12-h fcst1 6-h fcst 6-h fcst anl/6-h fcst1 analysis

Total column

condensed water

kg m22 analysis anl/6-h fcst1 analysis

Q850 kg kg21 analysis 12-h fcst1 analysis analysis anl/12-h fcst1 analysis analysis

T850 K analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

U850 m s21 analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

V850 m s21 analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

H850 m analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

Q700 kg kg21 analysis 12-h fcst1 analysis analysis anl/12-h fcst1 analysis analysis

T700 K analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

U700 m s21 analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

V700 m s21 analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

H700 m analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

Q500 kg kg21 analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

T500 K analysis 12-h fcst1 analysis analysis anl/12-h fcst1 analysis analysis

U500 m s21 analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

V500 m s21 analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

H500 m analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

Q300 kg kg21 analysis 12-h fcst1 analysis analysis anl/12-h fcst1 analysis analysis

T300 K analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis
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Further details, including descriptions of the forecast

times and missing variables, are included in Table A1.

b. Interpolation (step 2)

To compare and produce an ensemble, a common grid

must be defined. Because most operational analyses are

near or going to ;100-km spatial scales, a grid on the

order of 18 latitude and longitude was desirable. Also,

many data products (GPCP and the existing climate

reanalyses data) use a regular latitude–longitude coarse

grid (2.58, in the case of GPCP). Thus, a regular latitude–

longitude grid that is near the spatial scale of the obser-

vational analyses, but also can be related easily to the

reanalyses coarse grid, was chosen. The resolution is 1.258

latitude 3 1.258 longitude (144 3 288 grid points), with

the (1, 1) center point located at 89.3758S, 179.3758W.

The native grid from each of the NWPCs supplied

to CEOP was interpolated to the common grid using

a freely available routine (available online at http://

www.opengrads.org/ re() function). In the cases where

the native grid is finer than 1.258 3 1.258, box averaging

was used. In the cases where the native grid is coarser

than 1.258 3 1.258, bilinear interpolation was be used.

No other filtering or screening of the gridded data was

applied (except for some belowground heights; details

in the appendix, section 1c). At the end of this step, the

data from each NWPC were on the common grid at a

6-hourly time interval, with common variable names

and units. A list of the available variables for each center

can be found in Table A1.

c. Ensemble average (step 3)

The ensemble average is the straight average of all of

the available variables from each NWPC at each 6-hourly

time interval. Because not all of the centers provided

all variables, the ensemble averaging was done with those

centers that did provide the given variable. If any data

were missing from one or more of the NWPCs at a given

time, the ensemble average was the average of the

remaining data available. For the upper-air data at 850

and 700 hPa, a masking to the MAC ensemble was applied

for areas where the surface pressure at the given time was

less than the pressure of the level (less than 850 hPa or less

than 700 hPa, respectively). This masking was also per-

formed for the BMRC 6-hourly data but not for the other

individual NWPCs. The flowchart of decisions used for

each variable during the creation of the MAC ensemble

at each of the 3292 6-hourly times is shown in Fig. A1.

The individual center’s interpolated variable is also

provided with the MAC, so that it will be apparent when

data are included in the ensemble average or not. Also,

a separate dataset is provided that enumerates the

number of ensemble members for each variable for each

time. Similarly, the standard deviation at each 6-hourly

time step was computed from the available data that

made up the ensemble average. The ensemble mean

and standard deviation are provided as separate data-

sets on the same grid and in the same format as the

individual NWPCs described at the end of the appendix

(step 2).

d. Daily and monthly averages (steps 4–6)

The daily average of the ensemble mean was the

simple average of the 0000, 0600, 1200, and 1800 UTC

data on the given date. For the individual NWPCs, the

daily average was the same, except that if an individual

variable was missing or unavailable for at least one time

during the date, that variable was considered to be un-

defined for that center on that day. The one exception to

this is the MSC upper-air data, which were only avail-

able at 0000 and 1200 UTC, and the daily average is just

the average of these 2 times. Also, for each dataset, if at

least 1 of the 4 times of the day had a point masked out

because the surface pressure was less than the pressure

of the upper-air level, then that point was also masked

out for the entire day. The flowchart for the daily av-

erages is shown in Fig. A2. The daily standard deviation

was then calculated between the centers that had valid

daily averages for each variable. Note that the daily

ensemble mean may include more data/centers than the

daily ensemble standard deviation. An example of this

is to suppose the 500-hPa height field was missing for

TABLE A1. (Continued)

Description Units BMRC CPTEC ECPC-RII ECPC-SFM JMA MSC NCEP UKMO

U300 m s21 analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

V300 m s21 analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

H300 m analysis 12-h fcst1 analysis analysis analysis anl/12-h fcst1 analysis analysis

Q200 kg kg21 analysis 12-h fcst1 analysis analysis analysis analysis

T200 K analysis 12-h fcst1 analysis analysis analysis analysis analysis

U200 m s21 analysis 12-h fcst1 analysis analysis analysis analysis analysis

V200 m s21 analysis 12-h fcst1 analysis analysis analysis analysis analysis

H200 m analysis 12-h fcst1 analysis analysis analysis analysis analysis
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1200 UTC only for one center. The 6-hourly ensemble

means will include the 0000, 0600, and 1800 UTC times

for this center; therefore, the daily ensemble mean will

proportionally include this data. However, the daily

mean for this center/variable will be considered un-

defined and will not be included in the daily ensemble

standard deviation.

The monthly average of the ensemble mean was the

simple average of all the times in the month. For the

individual NWPCs, the monthly average was calculated

differently. First, all the 0000 UTC times during the

month were averaged and then the times of 0600, 1200,

and 1800 UTC. Next, these 4 times were summed and

divided by four. This method was done to minimize the

effect of an individual missing time on the monthly

average. For example, if a 0600 UTC time was missing

for a variable such as downward surface radiation on a

single date, then this missing time would have a no-

ticeable effect on the monthly average. If the similar

times were averaged first, this problem is reduced;

however, averaging does give a little extra weight to the

other dates where the variable was available. No more

than 6 times during the month were allowed to be un-

defined (out of a typical 120 or 124 6-hourly periods). If

more than 6 times were undefined, the variable for that

month was undefined. Similarly, if a given point had

more than 6 times masked because the surface pressure

was less than the pressure of the upper-air level, the point

was also masked. The exceptions to this were for the

UKMO data (numerous missing times), the CPTEC data

(only for May 2003, as a result of missing data), and the

MSC data (only 0000 and 1200 UTC data were avail-

able). Note the because of numerous missing forecasts

during December 2002 for UKMO, the monthly values

are all undefined for this month only. The flowchart for

the monthly averages is shown in Fig. A3. The monthly-

average standard deviation was then calculated between

the individual centers’ monthly averages. Again, because

of the different methods of the monthly-average calcu-

lations, the monthly-average standard deviation will not

be exactly centered about the ensemble mean monthly

average.

e. Write out the gridded data for the MAC (step 7)

Data were written to binary output and then con-

verted to the NetCDF and GRIB1 formats for release to

the contributors and to the community. The resulting

FIG. A1. Flowchart depicting the decisions and calculations

performed in the generation of the MAC 6-h time series.

FIG. A2. As in Fig. A1, but for the creation of daily averages.
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binary (or NetCDF) output size is roughly 284 GB

(about 134 GB in GRIB1). Each file contains the vari-

ables listed in Table A1 (with the common naming

convention). Common utilities, ncdump and wgrib, can

be used to identify the vital information needed to ac-

cess the data. A GRIB table common to all processed

centers and the MAC is also provided. The MAC data

are available from the NASA Goddard Data Informa-

tion Services Center (DISC) and the Max Planck In-

stitute Model and Data Center.
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